Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inflamm Bowel Dis ; 28(11): 1637-1646, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-35699622

RESUMO

BACKGROUND: Clinical challenges in inflammatory bowel diseases require microscopic in vivo evaluation of inflammation. Here, label-free imaging holds great potential, and recently, our group demonstrated the advantage of using in vivo multiphoton endomicroscopy for longitudinal animal studies. This article extends our previous work by in-depth analysis of label-free tissue features in common colitis models quantified by the multiphoton colitis score (MCS). METHODS: Fresh mucosal tissues were evaluated from acute and chronic dextran sulfate sodium (DSS), TNBS, oxazolone, and transfer colitis. Label-free imaging was performed by using second harmonic generation and natural autofluorescence. Morphological changes in mucosal crypts, collagen fibers, and cellularity in the stroma were analyzed and graded. RESULTS: Our approach discriminated between healthy (mean MCS = 2.5) and inflamed tissue (mean MCS > 5) in all models, and the MCS was validated by hematoxylin and eosin scoring of the same samples (85.2% agreement). Moreover, specific characteristics of each phenotype were identified. While TNBS, oxazolone, and transfer colitis showed high cellularity in stroma, epithelial damage seemed specific for chronic, acute DSS and transfer colitis. Crypt deformations were mostly observed in acute DSS. CONCLUSIONS: Quantification of label-free imaging is promising for in vivo endoscopy. In the future, this could be valuable for monitoring of inflammatory pathways in murine models, which is highly relevant for the development of new inflammatory bowel disease therapeutics.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Camundongos , Animais , Sulfato de Dextrana , Oxazolona , Modelos Animais de Doenças , Inflamação
2.
Sci Rep ; 12(1): 8753, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35610504

RESUMO

Multi- and hyperspectral endoscopy are possibilities to improve the endoscopic detection of neoplastic lesions in the colon and rectum during colonoscopy. However, most studies in this context are performed on histological samples/biopsies or ex vivo. This leads to the question if previous results can be transferred to an in vivo setting. Therefore, the current study evaluated the usefulness of multispectral endoscopy in identifying neoplastic lesions in the colon. The data set consists of 25 mice with colonic neoplastic lesions and the data analysis is performed by machine learning. Another question addressed was whether adding additional spatial features based on Gauss-Laguerre polynomials leads to an improved detection rate. As a result, detection of neoplastic lesions was achieved with an MCC of 0.47. Therefore, the classification accuracy of multispectral colonoscopy is comparable with hyperspectral colonoscopy in the same spectral range when additional spatial features are used. Moreover, this paper strongly supports the current path towards the application of multi/hyperspectral endoscopy in clinical settings and shows that the challenges from transferring results from ex vivo to in vivo endoscopy can be solved.


Assuntos
Colonoscopia , Endoscopia Gastrointestinal , Animais , Biópsia , Colonoscopia/métodos , Camundongos
3.
Cancers (Basel) ; 14(6)2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35326623

RESUMO

Colorectal cancer (CRC) is a common disease and has limited treatment options. The importance of cancer-associated fibroblasts (CAFs) within the tumor microenvironment (TME) in CRC has been increasingly recognized. However, the role of CAF subsets in CRC is hardly understood and opposing functions of type I (COL1+) vs. type VI (COL6+) collagen-expressing subsets were reported before with respect to NFκB-related signaling. Here, we have focused on COL1+ fibroblasts, which represent a frequent CAF population in CRC and studied their role upon STAT3 activation in vivo. Using a dual strategy with a conditional gain-of-function and a conditional loss-of-function approach in an in vivo model of colitis-associated cancer, tumor development was evaluated by different readouts, including advanced imaging methodologies, e.g., light sheet microscopy and CT-scan. Our data demonstrate that the inhibition of STAT3 activation in COL1+ fibroblasts reduces tumor burden, whereas the constitutive activation of STAT3 promotes the development of inflammation-driven CRC. In addition, our work characterizes the co-expression and distribution of type I and type VI collagen by CAFs in inflammation-associated colorectal cancer using reporter mice. This work indicates a critical contribution of STAT3 signaling in COL1+ CAFs, suggesting that the blockade of STAT3 activation in type I collagen-expressing fibroblasts could serve as promising therapeutic targets in colitis-associated CRC. In combination with previous work by others and us, our current findings highlight the context-dependent roles of COL1+ CAFs and COL6+ CAFs that might be variable according to the specific pathway activated.

4.
Nat Cell Biol ; 23(7): 796-807, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34239062

RESUMO

Inflammatory bowel diseases present with elevated levels of intestinal epithelial cell (IEC) death, which compromises the gut barrier, activating immune cells and triggering more IEC death. The endogenous signals that prevent IEC death and break this vicious cycle, allowing resolution of intestinal inflammation, remain largely unknown. Here we show that prostaglandin E2 signalling via the E-type prostanoid receptor 4 (EP4) on IECs represses epithelial necroptosis and induces resolution of colitis. We found that EP4 expression correlates with an improved IBD outcome and that EP4 activation induces a transcriptional signature consistent with resolution of intestinal inflammation. We further show that dysregulated necroptosis prevents resolution, and EP4 agonism suppresses necroptosis in human and mouse IECs. Mechanistically, EP4 signalling on IECs converges on receptor-interacting protein kinase 1 to suppress tumour necrosis factor-induced activation and membrane translocation of the necroptosis effector mixed-lineage kinase domain-like pseudokinase. In summary, our study indicates that EP4 promotes the resolution of colitis by suppressing IEC necroptosis.


Assuntos
Colite/metabolismo , Colo/metabolismo , Dinoprostona/metabolismo , Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Necroptose , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Colite/induzido quimicamente , Colite/patologia , Colite/prevenção & controle , Colo/efeitos dos fármacos , Colo/patologia , Sulfato de Dextrana , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Células HT29 , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Necroptose/efeitos dos fármacos , Organoides , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Receptores de Prostaglandina E Subtipo EP4/agonistas , Receptores de Prostaglandina E Subtipo EP4/genética , Transdução de Sinais
5.
Nat Protoc ; 16(1): 61-85, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33318692

RESUMO

Despite advances in the detection and therapy of colorectal cancer (CRC) in recent years, CRC has remained a major challenge in clinical practice. Although alternative methods for modeling CRC have been developed, animal models of CRC remain helpful when analyzing molecular aspects of pathogenesis and are often used to perform preclinical in vivo studies of potential therapeutics. This protocol updates our protocol published in 2007, which provided an azoxymethane (AOM)-based setup for investigations into sporadic (Step 5A) and, when combined with dextran sodium sulfate (Step 5B), inflammation-associated tumor growth. This update also extends the applications beyond those of the original protocol by including an option in which AOM is serially applied to mice with p53 deficiency in the intestinal epithelium (Step 5C). In this model, the combination of p53 deficiency and AOM promotes tumor development, including growth of invasive cancers and lymph node metastasis. It also provides details on analysis of colorectal tumor growth and metastasis, including analysis of partial epithelial-to-mesenchymal transition, cell isolation and co-culture studies, high-resolution mini-endoscopy, light-sheet fluorescence microscopy and micro-CT imaging in mice. The target audience for our protocol is researchers who plan in vivo studies to address mechanisms influencing sporadic or inflammation-driven tumor development, including the analysis of local invasiveness and lymph node metastasis. It is suitable for preclinical in vivo testing of novel drugs and other interventional strategies for clinical translation, plus the evaluation of emerging imaging devices/modalities. It can be completed within 24 weeks (using Step 5A/C) or 10 weeks (using Step 5B).


Assuntos
Neoplasias do Colo/patologia , Inflamação/patologia , Metástase Linfática/patologia , Animais , Azoximetano , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/complicações , Sulfato de Dextrana , Modelos Animais de Doenças , Progressão da Doença , Feminino , Inflamação/induzido quimicamente , Inflamação/complicações , Masculino , Camundongos , Camundongos Endogâmicos C57BL
6.
Anal Chem ; 92(15): 10717-10724, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32640156

RESUMO

Optoacoustic (photoacoustic) imaging has seen marked advances in detection and data analysis, but there is less progress in understanding the photophysics of common optoacoustic contrast agents. This gap blocks the development of novel agents and the accurate analysis and interpretation of multispectral optoacoustic images. To close it, we developed a multimodal laser spectrometer (MLS) to enable the simultaneous measurement of optoacoustic, absorbance, and fluorescence spectra. Herein, we employ MLS to analyze contrast agents (methylene blue, rhodamine 800, Alexa Fluor 750, IRDye 800CW, and indocyanine green) and proteins (sfGFP, mCherry, mKate, HcRed, iRFP720, and smURFP). We found that the optical absorption spectrum does not correlate with the optoacoustic spectrum for the majority of the analytes. We determined that for dyes, the transition underlying an aggregation state has more optoacoustic signal generation efficiency than the monomer transition. For proteins we found a favored optoacoustic relaxation that stems from the neutral or zwitterionic chromophores and unreported photoswitching behavior of tdTomato and HcRed. We then crystalized HcRed in its photoswitch optoacoustic state, confirming structurally the change in isomerization with respect to HcReds' fluorescence state. Finally, on the example of the widely used label tdTomato and the dye indocyanine green, we show the importance of correct photophysical (e.g., spectral and kinetic) information as a prerequisite for spectral-unmixing for in vivo imaging.


Assuntos
Absorção Fisico-Química , Corantes/química , Proteínas Luminescentes/química , Imagem Molecular , Técnicas Fotoacústicas , Limite de Detecção , Modelos Moleculares , Conformação Proteica
7.
Gut ; 69(7): 1269-1282, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31685519

RESUMO

OBJECTIVE: Cancer-associated fibroblasts (CAFs) influence the tumour microenvironment and tumour growth. However, the role of CAFs in colorectal cancer (CRC) development is incompletely understood. DESIGN: We quantified phosphorylation of STAT3 (pSTAT3) expression in CAFs of human colon cancer tissue using a tissue microarray (TMA) of 375 patients, immunofluorescence staining and digital pathology. To investigate the functional role of CAFs in CRC, we took advantage of two murine models of colorectal neoplasia and advanced imaging technologies. In loss-of-function and gain-of-function experiments, using genetically modified mice with collagen type VI (COLVI)-specific signal transducer and activator of transcription 3 (STAT3) targeting, we evaluated STAT3 signalling in fibroblasts during colorectal tumour development. We performed a comparative gene expression profiling by whole genome RNA-sequencing of fibroblast subpopulations (COLVI+ vs COLVI-) on STAT3 activation (IL-6 vs IL-11). RESULTS: The analysis of pSTAT3 expression in CAFs of human TMAs revealed a negative correlation of increased stromal pSTAT3 expression with the survival of colon cancer patients. In the loss-of-function and gain-of-function approach, we found a critical role of STAT3 activation in fibroblasts in driving colorectal tumourigenesis in vivo. With different imaging technologies, we detected an expansion of activated fibroblasts in colorectal neoplasias. Comparative gene expression profiling of fibroblast subpopulations on STAT3 activation revealed the regulation of transcriptional patterns associated with angiogenesis. Finally, the blockade of proangiogenic signalling significantly reduced colorectal tumour growth in mice with constitutive STAT3 activation in COLVI+ fibroblasts. CONCLUSION: Altogether our work demonstrates a critical role of STAT3 activation in CAFs in CRC development.


Assuntos
Neoplasias Colorretais/etiologia , Interleucina-11/metabolismo , Interleucina-6/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Colo/metabolismo , Neoplasias Colorretais/diagnóstico , Fibroblastos/metabolismo , Humanos , Camundongos , Fosforilação , Prognóstico , Análise Serial de Tecidos , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...